Tuning the performance of hybrid organic/inorganic quantum dot light-emitting devices

نویسندگان

  • Seth Coe-Sullivan
  • Wing-Keung Woo
  • Jonathan S. Steckel
  • Moungi Bawendi
چکیده

The luminescence of inorganic core-shell semiconductor nanocrystal quantum dots (QDs) can be tuned across much of the visible spectrum by changing the size of the QDs while preserving a spectral full width at half maximum (FWHM) as narrow as 30 nm and photoluminescence efficiency of 50% [Journal of Physical Chemistry B 101 (46) (1997) 9463] [1]. Organic capping groups, surrounding the QD lumophores, facilitate processing in organic solvents and their incorporation into organic thin film light-emitting device (LED) structures [Nature 370 (6488) (1994) 354] [2]. A recent study has shown that hybrid organic/inorganic QD-LEDs can indeed be fabricated with high brightness and small spectral FWHM, utilizing a phase segregation process which self-assembles CdSe(ZnS) core(shell) QDs onto an organic thin film surface [Nature 420 (6917) (2002) 800] [3]. We now demonstrate that the phase segregation process can be generally applied to the fabrication of QD-LEDs containing a wide range of CdSe particle sizes and ZnS overcoating thicknesses. By varying the QD core diameter from 32 A to 58 A, we show that peak electroluminescence is tuned from 540 nm to 635 nm. Increase in the QD shell thickness to 2.5 monolayers ( 0.5 nm) improves the LED external quantum efficiency, consistent with a F€ orster energy transfer mechanism of generating QD excited states. In this work we also identify the challenges in designing devices with very thin ( 5 nm thick) emissive layers [Chemical Physics Letters 178 (5–6) (1991) 488] [4], emphasizing the increased need for precise exciton confinement. In both QD-LEDs and archetypical all-organic LEDs with thin emissive layers, we show that there is an increase in the exciton recombination region width as the drive current density is increased. Overall, our study demonstrates that integration of QDs into organic LEDs has the potential to enhance the performance of thin film light emitters, and promises to be a rich field of scientific endeavor. 2003 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NiO as an inorganic hole-transporting layer in quantum-dot light-emitting devices.

We demonstrate a hybrid inorganic/organic light-emitting device composed of a CdSe/ZnS core/shell semiconductor quantum-dot emissive layer sandwiched between p-type NiO and tris-(8-hydroxyquinoline) aluminum (Alq3), as hole and electron transporting layers, respectively. A maximum external electroluminescence quantum efficiency of 0.18% is achieved by tuning the resistivity of the NiO layer to ...

متن کامل

Inorganic Quantum Dots in Organic Host Matrices for Efficient LEDs

Much effort has been devoted to improving the performance of Organic Light Emitting Devices (OLEDs) by increasing their efficiency, narrowing or broadening their emission spectra, or polarizing their emission. In this work we examine the benefits of incorporating other material systems within organic host matrices to generate efficient hybrid organic/inorganic LEDs of saturated color. Specifica...

متن کامل

Quantum current modeling in nano-transistors with a quantum dot

Carbon quantum dots (CQDs) serve as a new class of ‘zero dimensional’ nanomaterial’s in thecarbon class with sizes below 10 nm. As light emitting nanocrystals, QDs are assembled from semiconductormaterials, from the elements in the periodic groups of II-VI, III-V or IV-VI, mainly thanks to impacts of quantum confinement QDs have unique optical properties such as brighter, highly pho...

متن کامل

Influences of Device Architectures on Characteristics of Organic Light-Emitting Devices Incorporating Ambipolar Blue-Emitting Ter(9,9-diarylfluorenes)

In this article, we report the studies of various device architectures of organic lightemitting devices (OLEDs) incorporating highly efficient blue-emitting and ambipolar carriertransport ter(9,9-diarylfluorene)s, and their influences on device characteristics. The device structures investigated include single-layer devices and multilayer heterostructure devices employing the terfluorene as one...

متن کامل

Hybrid organic/quantum dot thin film structures and devices

Organic light emitting diodes have undergone rapid advancement over the course of the past decade. Similarly, quantum dot synthesis has progressed to the point that room temperature highly efficient photoluminescence can be realized. It is the purpose of this work to utilize the beneficial properties of these two material sets in a robust light emitting device. New deposition techniques are nec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003